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Abstract - If i, j belongs to a permutation on n symbols {1, 2, 
…, p} and i is less than j then there is an edge between i and j 
in the permutation graph if i appears after j. (i. e) inverse of i is 
greater than the inverse of j. So the line of i crosses the line of j 
in the permutation. So there is a one to one correspondence 
between crossing of lines in the permutation and the edges of 
the corresponding permutation graph. In this paper we found 
the conditions for a permutation to realize paths and cycles and 
also derived the domination number of permutation graph 
through the permutation. AMS Subject Classification (2010): 
05C35, 05C69, 20B30. 
 
Key Words: Permutation Graphs, Domination Number of a 
Permutation 

 
I. DOMINATION IN PERMUTATION GRAPHS 

 
Introduction:  Adin and Roichman  [1] introduced the concept 
of permutation graphs and Peter Keevash, Po-Shen Loh and 
Benny Sudakov [2] identified some permutation graphs with 
maximum number of edges. Charles J Colbourn, Lorna 
K.Stewart [3] characterized the connected domination and 
Steiner Trees under the Permutation graphs. In this paper we 
give an algorithm to find a minimal dominating set and so a set 
of all MDS of a permutation graph from the corresponding 
permutation. We proved the conditions for a complete 
bipartition and complete tripartition of a permutation graph and 
not all the graphs are permutation graphs.  
 
Definition 1.1: Let   π be a permutation on p symbols {

}where image of ai is a’i. Then the 
PERMUTATION GRAPH Gπ is given by  (Vπ , Eπ ) where 

and  .  

   
Definition 1.2:The element ai is said to DOMINATE aj 
if their lines cross each other in π. The set of collection 
of elements of π whose lines cross all the lines of the elements 

in π is said to be a DOMINATING SET of π. 
 

is always a dominating set. 

Definition 1.3:  The subset D of  { } is said to be a 
MINIMAL DOMINATING SET of π if D-  is not a 
dominating set of π for all aj D.  
 
Definition1.4:  The DOMINATION NUMBER of a 
permutation π is the minimum cardinality of a set in MDS(π) 
and is denoted by γ(π). 

 
Definition 1.5:     A graph G is a PERMUTATION GRAPH if 
there exists a permutation π such that Gπ = G. (i.e) a graph is a 
permutation graph if it is realizable by a permutation π. 
Otherwise it is not a permutation graph. 
 
Definition 1.6:  The NEIGHBOURHOOD of ai in π is a set of 
all elements of π whose lines cross the line of ai and is    
denoted by Nπ(ai).  
 
Theorem 1.7:      The domination number of a permutation    π 
is equal to the domination number of the corresponding 
permutation graph realized by π. (i.e) γ(π)= γ(Gπ), the 
minimum cardinality of a minimal dominating set of Gπ.  
Proof: Let π be a permutation on a finite set A = {
} and let Gπ be the permutation graph, where    Vπ= A. Choose 

in π whose lines cross each other. Then or will 
be in a dominating set, say D. Let D= and let S = Nπ( ). 
Let V1= V- (D S). If V1 = Φ, then D is a minimal dominating 
set of π. If not, either V1  has elements whose lines cross the 
lines of π or has elements without crossing lines in π (trivial 
crossing). If all the elements of V1 has trivial crossing then 
D1=D V1  is a minimal dominating set. If V1 has elements 
whose  lines cross the lines of elements of π then choose ar  
V1 whose line crosses the line of at in π. Then  D1= D {ar}      
or D1=D {at}. Let D1= D {ar}. Then S1 = S Nπ(ar), 
where at Nπ(ar). Then V2 = V1- (D1 S1).   If V2 = Φ then D1 
is the minimal dominating set of π. If not, either V2 has 
elements whose lines cross the lines of elements of π, or has 
elements which do not cross any of the lines  of elements of π. 
As discussed earlier we arrive at a minimum dominating set D2 
= D1 V2 or D2 = D1 {as} and   S2 = S1 Nπ(as), where ar  
Nπ(as). On continuing this process,  after a finite stage k,    we 
arrive at either   Vk  = Φ  or  Vk consisting of elements whose 
lines do not cross any of the lines of the elements of π. In both 
cases Dk Vk  is a minimal dominating set of π. Thus all the               
minimal dominating sets MDS(π) can be established. The 
minimum cardinality of the set in MDS(π) is  the domination 
number of π which is γ(π). There exists a 1-1 correspondence 
between the crossing of lines of elements of π and the edges of 
Gπ. Hence γ(π)= γ(Gπ). ■  
 

II. DOMINATION IN COMPLETE BIPARTITE AND 
TRIPARTITE GRAPHS 

  
Lemma 2.1: Let π be a permutation on p symbols
such that . Then the permutation graph is a 
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complete graph if and only if the images of the elements are 
such that .  
 
Proof: Let Vπ=  such that   and   

. Let i < j . i,j = 1,2,…,p, i ≠ j.       Then 

.. Hence by hypothesis the images are in the reverse 
order. Therefore and       so  

. This is true if  j < i also.  Hence  , i ≠ j. So 
Gπ is a complete graph. Conversely  suppose that Gπ is a  
complete  graph.                 Let Gπ = Kp. Let i < j. Hence 

and and . Then  and as 

for all  i≠j                   and so > 0. 

(i.e) k > k’. 
 
 Therefore   
 
(i.e) ■ 
 
Theorem 2.2: Let π be a permutation on p symbols 

such that . Then the permutation 
graph is a complete graph if and only if the images of the 
elements are such that . Then the 
domination number of π is 1.  
 
Proof: Let π  be a permutation on  p symbols such 
that and . Then by Lemma 
2.1, Gπ corresponds to the complete graph  Kp. Equivalently 
every line of an element in π  crosses all the remaining lines of 
the elements of π.   Therefore the domination number of π is 1.  
  
Lemma 2.3: Let π be a permutation on S=        

such that and  

 where k = 2,3,…,p. Then Gπ is a complete bipartite 
graph.  
 
Proof: Let Vπ = S , 

 

          k 

= 2,3,…p. Let 
 

and . (i.e) . Then by  

hypothesis .Therefore
 

which implies 
  Hence , k ≤ i ≤ p,              

1 ≤ j≤ k-1.  Let . Assume that  . Then                

by the hypothesis, which implies that 
.  Hen c e  . It is also true if 

, . Therefore there is no edge among points of 
V1.  Similarly it can be seen that there is no edge among points 
of V2. Hence Gπ is a complete bipartite graph. 
 
Theorem 2.4: Let π be a permutation on S=      

such that and                 

where k = 2,3,…p. Then γ(π)=1, if  k= 2 or p, 
and γ(π)= 2 if k = 3,4,...,  p-1.  
 
Proof: π is a permutation on S= such that           

and  
where      k = 2,3,…p. Then by Lemma 2.3,  Gπ is a complete 
bipartite graph. If k = 2 and  k  =  p  th en  Gπ =K1,p-1           
and hence  γ(π) =1.  I f k = 3,4,...,p-1, by Lemma 2.3   
γ(π)= 2.  
 
Lemma 2.5:  
Let π be a permutation on S=   where p is odd 

such that and 

 

 where    k = 0,1,2,…, (p-3)/2. Then Gπ 

is a complete tripartite graph. 
 
Proof: Let Vπ= . Let V1= { }; 

V2= andV3={ } 

where   k = 0,1,2,3,…,(p-3)/2.   Let and .  Then 

 .  Then by hypothesis  . (i.e) .             

Therefore . Hence ,      
and  where   k = 

0,1,2,…, (p-3)/2.     Hence every vertex in V1 is adjacent to all 
the vertices of  V2. Similarly it can be proved that every vertex 
in V1 is adjacent to all the vertices of V3 and every vertex in V2 
is adjacent to all the vertices of V3.         Now let us prove that 
there exists no edge among vertices of V1.  Let . 

Assume that . Then by the hypothesis,  

which implies that .  Hen c e  

.It is also true if , . Therefore there is no edge 
among vertices of V1.  Similarly it can be seen that there is no 
edge among vertices of V2 and among vertices of V3. Hence Gπ  
is a complete tripartite graph. 
 
Lemma 2.6: Let π be a permutation on S= where  

p is even such that  and  

    

where k =1,2,…,(p/2)-1. Then Gπ is a complete tripartite graph. 
Proof:  Let Vπ= .Let V1= { }; V2=

 and V3={ } where   k 

= 1,2,3,…,(p/2)-1.  Let 
 
and .  Then  .     By 

hypothesis . (i.e)  which implies 

.Hence ,  
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and where k = 1,2,3,…,(p/2)-1. Hence 

every vertex of V1 is adjacent to all the vertices of V2. 
Similarly it can be proved that every vertex of                        
V1 is adjacent to all  the vertices of  V3 as well as                
between      vertices of V2 and V3. Now let us prove that       
there exists no edge among vertices of V1.  Let . 

Assume that . Then by the hypothesis,  

which implies that .  He n c e  . 
It is also true if , . Therefore there is no          
edge among vertices of V1.  Similarly it can be seen that       
there is no edge among vertices of V2 and among the        
vertices of V3. Hence Gπ is a complete tripartite graph. ■ 
Remark 2.7: Let π be a permutation on S=      such 

that . If π is expressed as a product       of 

disjoint cycles such as   where 

for odd p and 

for even p, then Gπ is a complete tripartite graph by 
Lemma 2.5 and Lemma 2.6. 
 
Remark 2.8: The permutations following the pattern described 
in the Remark 2.7 always realizes a connected graph. Hence    
1≤ γ(π) ≤ p/2  
 
Remark 2.9: The number of distinct permutations on p symbols 
yielding complete tripartite graphs is k = (p-1)/2 for odd p and 
k = (p-2)/2 for even p  
 
Theorem 2.10: Let π be a permutation on S= such 
that . If π is expressed as a product  of disjoint 

cycles such as   where 

for odd p and 

for even p, then (i) γ(π) = 1 for    k = 1 and odd p; (ii) 
γ(π) =1 if π = (a1ap); (iii)  γ(π) = 2, otherwise. 
  
Proof:  Let π be a permutation on S= such that 

. If π is expressed as a product  of disjoint 

cycles such as  where 
for odd p and 

for even p, then π follows the pattern as described in 
Lemma 2.5 and Lemma 2.6  by the Remark 2.7. Hence 
(i) γ(π) = 1 for  k = 1 and odd p; (ii) γ(π) = 1 if  π = 
(a1ap); (iii)  γ(π) = 2, otherwise. 
 

III. REALIZABLE PERMUTATION GRAPHS 
 
Lemma 3.1:  
Let π be a permutation on S=      such that 

. and let (A)  odd i, 1< i < p, and  

, even j, 1≤ j < p-1,  and             for odd  

p and  for even p  (or)  (B) ,              odd i, 1 < 
p, and ,even j, 2< j ≤ p, a’2= a1 and      for  odd 
p and for even p.  Then Gπ is a path with        p 
vertices. 
 
Proof:  
(A) Given   odd i, 1< i < p, and  ,     even j, 1≤ 
j < p-1,  and  for odd  p and        for 

even p. Hence ; ;  1≤ j < p-1;      

and odd i , 1< i < p.  
 
Case 1: Let m be odd.  
Claim1: , 1 ≤ m < p.                                   
We know .  and  . Therefore  

-  =  -  > 0 and hence ( )(
- ) < 0.  So . Similarly  

and           - = - > 0.  Hence 
,1 ≤ m < p.  
Claim 2: where k=4,5,6,…,p-m.  Here , 

and for even k and          

for odd k. Therefore ( )( - ) < 0.         
Hence where k = 4,5,6,…,p-m.   
Case 2: Let m be even.  
m-1 and m-3 are odd and similar proof can be given to        
show that , 1 < m ≤ p − 1 and              
where 1 < m < p, k =1,2,3,..., p-m. 
Case 3: Let us prove that , and , where      
i = 1,3,4,…,p-1;  and  1 < n ≤ p .             

, - = -  < 0. Therefore 

. Hence . We know that 

,i = 1,3,4,...,p-1. - = - , 
k=2,3,...,p-1. Hence , i=1,3,4,..,p-1. Similarly it can 
be proved that and . Hence the permutation 
π given by  odd i, 1< i < p, and  , even j,        
1≤ j < p-1,  and for odd  p and  for  
even p realizes a path . By the same 
argument as above it can be proved that π  realizes the path 

 for even p. 
(B) Similar proof can be set for the pattern  given by π            

, odd i, 1≤ i < p, and ,even j, 2< j ≤ p, a’2= a1 
and  for  odd p and for even p. This pattern 
realizes the path  for odd p and

  for  even p. 
 
Theorem 3.2: Let π be a permutation on S=      

such that . and let (A)  odd i, 1< i < p, 
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21' aa  pp aa 1' 1'  pp aa
},,...,,,,{ 234121  ppp aaaaaaP

},,...,,,,{ 134121  ppp aaaaaaP

2'  ii aa 2'  jj aa

1'  pp aa pp aa 1'
},,...,,,,{ 152311  ppp aaaaaaP

},,,...,,,,{ 2152311 pppp aaaaaaaP 

 paaa .,..,, 21

paaa  .....21 2'  ii aa

2'  jj aa 21' aa  pp aa 1'
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for odd  p and  for even p  (or)  (B) , odd i,        
1≤ i < p, and ,even j, 2< j ≤ p, a’2= a1 and      
for  odd p and for even p.  Then γ(π) = . 

Proof: Let π be a permutation on S=      such that 

. and let (A)  odd i, 1< i < p, and  

, even j, 1≤ j < p-1,  and             for odd  
p and  for even p  (or)  (B) , odd i,        1≤ i < 
p, and ,even j, 2< j ≤ p, a’2= a1 and      for  odd 
p and for even p.  Then by Lemma 3, Gπ is a   path 
with p vertices and hence γ(π) = . 
 
Theorem 3.3: Cn, is not a permutation graph for any n ≥ 5 
Proof:  When n = 3, according to Lemma 2.1 C3 is a 
permutation graph.  When n = 4 then by Lemma 2.3, C4 is   
also a permutation graph.  The permutations mentioned in    the 
above theorem realize the path with p vertices. The vertices   a2 
and ap are adjacent to exactly one vertex each and other 
vertices are of degree 2 in case A and the vertices   a1 and ap−1 
are adjacent to exactly one vertex each and other vertices are of 
degree 2 in case B. Therefore if a permutation has to realize a 
cycle, then the vertices a2 and ap in Case A,     or a1 and ap−1 in 
Case B must be of degree two along  with   the other vertices 
with degree two, which is not possible by the above theorem. 
Hence Cn, n ≥ 5 are not permutation graphs. 
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